
International Astronomy and Astrophysics Competition

Pre-Final Round 2019

Solutions to the Pre-Final Round 2019

Please note that there are many ways to reach the final solutions. Not all detailed steps are elaborated in this solution document.

www.iaac.space 1/11

Problem A.1: Journey to Proxima Centauri (4 Points)

The diameter of the Sun is 1.39 million kilometres and the Earth is 8.3 light minutes far away. Proxima Centauri is the nearest star - it has a distance of 4.24 light years to our Sun.

- (a) How long does it take to travel to Proxima Centauri with
 - (i) an airplane (920 km/h) or
 - (ii) with the Voyager 1 space probe (17 km/s).
- (b) Let the Sun have the size of a tennis ball (diameter: 6.7 cm): How far away is the Earth and how far away is Proxima Centauri on this scale?

Solution a.i:

$$t_{air} = 4.24 y \cdot \frac{c}{v_{air}} pprox 5 \ ext{million years}$$

Solution a.ii:

$$t_{voy} = 4.24 y \cdot \frac{c}{v_{voy}} pprox 75 ext{ thousand years}$$

Solution b:

L: scaled distance, d_S : diameter Sun, D: diameter of tennis ball

$$L_{earth} = D \cdot \frac{8.3 \, min \cdot c}{d_S} \approx 7.2 \, m$$

$$L_{star} = D \cdot \frac{4.24 \, y \cdot c}{d_S} \approx 1930 \, km$$

www.iaac.space 2/11

Problem A.2: Orbit of the Solar System (4 Points)

The Milky Way has a diameter of about 150,000 light years. Our solar system is located 27,000 light years from the center of the Milky Way and orbits the center with a speed of 220 km/s.

- (a) How long does it take for the solar system to circle the center of the Milky Way?
- (b) The earth has formed about 4.5 billion years ago. How often has the earth circled the center?

Solution a:

$$T=rac{2\pi r_{sun}}{v_{sun}}=rac{2\pi t_{sun}c}{v_{sun}}pprox 231$$
 million years

Solution b:

$$\frac{4.5 \cdot 10^9 \, y}{231 \cdot 10^6 \, y} \approx 19.5 \, \mathrm{rotations}$$

www.iaac.space 3/11

Problem A.3: Distance to Arcturus (4 Points)

The stellar parallax of the star Arcturus in the constellation Boötes was measures with 0.09''.

- (a) Calculate the distance (in parsec) between Arcturus and the Earth.
- (b) How long does it take to send a light message from Earth to Arcturus?

Solution a:

Stellar parallax p = 0.09'':

$$d = \frac{1pc \cdot 1''}{p} = 11.11 \, pc$$

Solution b:

$$11.11 \ pc = 32.22 \ ly \ \Rightarrow \ 36.22 \ {\rm years}$$

www.iaac.space 4/11

Problem A.4: From Earth to Mars (4 Points)

For a special mission to Mars you need to know the smallest distance between Earth and Mars. However, you have lost your astronomy book and you could only find these values:

Distance Earth to Sun: 149.6 million km

Orbital period Earth: 1.00 years Orbital period Mars: 1.88 years

By using these values and assuming that Mars and Earth move an circular orbits, calculate the smallest possible distance between Earth and Mars.

Solution:

Kepler's third law $\rightarrow T^2/R^3 = const.$

$$\frac{T_E^2}{R_E^3} = \frac{T_M^2}{R_M^3} = \frac{T_M^2}{(R_E + d)^3} \ \, \Rightarrow \ \, d = \left[\left(\frac{T_M}{T_E} \right)^{2/3} - 1 \right] R_E \approx 78.28 \, \mathrm{million \, km}$$

www.iaac.space 5/11

Problem B.1: New Star (6 Points)

You have discovered a new star in the Milky Way: Your new star is red and has 3/5 the temperature of our Sun. The new star emits a total power that is 100,000 times greater than the power emitted by our Sun.

- (a) Determine the spectral type (i.e. spectral classification) of the new star.
- (b) How many times bigger is the radius of the new star compared to the radius of our Sun?

Solution a:

Red color, 3/5 cooler than sun \rightarrow Class M star

Solution b:

Stefan-Boltzmann law: (total power) $L = \sigma A T^4 = 4\pi\sigma \cdot R^2 T^4$

Properties of Sun: T_0 , R_0 , T_0 :

$$\frac{L}{L_0} = \frac{4\pi\sigma \cdot R^2 T^4}{4\pi\sigma \cdot R_0^2 T_0^4} = \left(\frac{R}{R_0}\right)^2 \left(\frac{T}{T_0}\right)^4 \quad \Rightarrow \quad \frac{R}{R_0} = \sqrt{\frac{L}{L_0}} \left(\frac{T_0}{T}\right)^2 \approx 878 \text{ times bigger}$$

www.iaac.space 6/11

Problem B.2: Moon Satellite (6 Points)

The Moon has a mass of $M=7.3\cdot 10^{22}~kg$, a radius of $R=1.7\cdot 10^6~m$ and a rotation period of T=27.3 days. Scientists are planning to place a satellite around the Moon that always remains above the same position (geostationary).

- (a) Calculate the distance from the Moon's surface to this satellite.
- (b) Explain if such a Moon satellite is possible in reality.

Solution a:

For a stable orbit (using Newton's law of gravitation):

$$a_{grav} = a_{radial} \implies G \frac{M}{(h+R)^2} = (h+R)\omega^2 = (h+R)\left(\frac{2\pi}{T}\right)^2$$

$$\Rightarrow h = \left[\left(\frac{T}{2\pi}\right)^2 GM\right]^{1/3} - R \approx 86,500 \, km$$

Solution b:

Distance Earth-Moon: 384,000 km \rightarrow gravitational interference from earth \rightarrow not possible

www.iaac.space 7/11

Problem B.3: Binary Star System (6 Points)

You are the captain of a spaceship that is circling through a binary star system. Due to the gravitational forces and the rocket engines, the orbit of your spaceship looks like that:

The position of your spaceship (in AU) at the time t (in days) is given by:

$$x = 5\sin(t) \qquad y = \sin(2t) \qquad z = 0$$

- (a) How long does it take your spaceship to circle the orbit once?
- (b) Find an equation that calculates the velocity v(t) of your spaceship at a given time t.
- (c) The two stars are positioned at the points (4,0,0) and (-4,0,0): What is the distance of your spaceship to the stars at the time $t=\frac{\pi}{2}$?

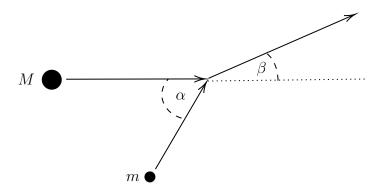
Solution a:

Superposition movement:

$$x=5\sin(t)=5\sin\left(rac{2\pi}{T}t
ight) \ \Rightarrow \ t=rac{2\pi}{T}t \ \Rightarrow \ T=2\pi pprox 6.28 \, {
m days}$$

Solution b:

$$\vec{x}(t) = \begin{pmatrix} 5\sin(t) \\ \sin(2t) \\ 0 \end{pmatrix} \quad \Rightarrow \quad \vec{v}(t) = \dot{\vec{x}}(t) = \begin{pmatrix} 5\cos(t) \\ 2\cos(2t) \\ 0 \end{pmatrix} \quad \Rightarrow \quad v(t) = \sqrt{25\cos^2(t) + 4\cos^2(2t)}$$


Solution c:

$$\begin{split} \vec{d}_{\pm}(t) &= \vec{x}(t) \pm \begin{pmatrix} 4 \\ 0 \\ 0 \end{pmatrix} \quad \Rightarrow \quad d_{\pm}(t) = \sqrt{(5\sin(t) \pm 4)^2 + \sin^2(2t)} \\ &\Rightarrow \quad d_{+}\left(\frac{\pi}{2}\right) = 9 \text{ AU}, \quad d_{-}\left(\frac{\pi}{2}\right) = 1 \text{ AU} \end{split}$$

www.iaac.space 8/11

Problem B.4: Asteroid Collision (6 Points)

A warning system has calculated that two asteroids will collide not far from Earth any time soon. The smaller asteroid has the mass m and moves with the velocity v_m . The bigger asteroid has the mass M=3m and the velocity of $v_M=\frac{1}{2}v_m$. They collide at an angle of $\alpha=60^\circ$ and turn into a single heavy asteroid (inelastic collision):

- (a) Calculate the velocity of the single object after the collision.
- (b) Determine the angle β after the collision.

Solution a:

Inelastic collision $\rightarrow \vec{p} = const.$ (conservation of momentum):

$$\vec{p} = M\vec{v}_M + m\vec{v}_m = Mv_M\hat{e}_M + mv_m\hat{e}_m = \frac{3}{2}v_m\hat{e}_M + mv_m\hat{e}_M$$

$$= (M+m)\vec{v} = 4m\vec{v}$$

$$\Rightarrow \vec{v} = \frac{3}{8}v_m\hat{e}_M + \frac{1}{4}v_m\hat{e}_m = \frac{1}{4}v_m\left[\frac{3}{2}\begin{pmatrix}1\\0\end{pmatrix} + \begin{pmatrix}\cos\alpha\\\sin\alpha\end{pmatrix}\right] = \frac{1}{4}v_m\left(\frac{3/2 + \cos\alpha}{\sin\alpha}\right)$$

$$\Rightarrow v = |\vec{v}| = \frac{1}{4}v_m\sqrt{(3/2 + \cos\alpha)^2 + \sin^2\alpha} = \frac{\sqrt{19}}{8}v_m \approx \frac{v_m}{2}$$

Solution b:

$$\vec{v} = v\hat{e}_v = v \begin{pmatrix} \cos \beta \\ \sin \beta \end{pmatrix} = \frac{1}{4} v_m \begin{pmatrix} 3/2 + \cos \alpha \\ \sin \alpha \end{pmatrix} \implies v \sin \beta = \frac{1}{4} v_m \sin \alpha$$

$$\Rightarrow \beta = \arcsin \left(\frac{1}{4} \frac{v_m}{v} \sin \alpha \right) \approx 23.41^{\circ}$$

www.iaac.space 9/11

Problem C.1: The Sunburst Arc (10 Points)

This problem requires you to read following recently published scientific article:

The Sunburst Arc: Direct Lyman lpha escape observed in the brightest known lensed galaxy.

T.E. Rivera-Thorsen, H. Dahle, M. Gronke, M. Bayliss, J.R. Rigby, R. Simcoe, R. Bordoloi, M. Turner, and G. Furesz, Astronomy & Astrophysics 608, (2017). Link: https://www.aanda.org/articles/aa/pdf/2017/12/aa32173-17.pdf

Answer following questions related to this article:

- (a) Why is it difficulty for LyC radiation to escape galaxies with high star formation rates?
- → containing large amounts of neutral hydrogen (opaque to LyC at column densities)
- (b) What is the difference between the density-bounded medium and the picket fence model?
- ightarrow density-bounded medium: region is surrounded by gas with sufficiently low column density to not completely weaken the LyC radiation
- \rightarrow picket fence model: region is surrounded by optically thick gas, but does not completely cover the source (radiation can pass through holes)
- (c) Explain the spectral shape of the *perforated shell model* (see article: figure 1, right box).
- → narrow central peak due to escaping radiation (through holes)
- \rightarrow overlaid by characteristic double-peak profile that emerges from optically thick gas
- (d) What is the Sunburst Arc and how was it discovered?
- \rightarrow a (lensed) galaxy (PSZ1-ARC G311.6602-18.4624)
- → discovered due to Sunyaev-Ze'dovich effect in the Planck data
- (e) When did the scientist observe the object and which instruments did they use?
- \rightarrow observations: UT 24 May 2017, beginning at 03:31, and UT 30 March 2016, beginning at 09:06
- → instruments: Magellan Echellette (MagE) spectro., Folded-port InfraRed Echelle (FIRE) spectro.
- (f) What is the redshift of the Sunburst Arc and how was it determined from the data?
- $\rightarrow z = 2.37094 \pm 0.00001$, by fitting a single Gaussian profile to the strong emission lines
- (g) Explain the difference between the right and the left diagram in figure 4 (see article).
- → right diagram: plot of the observation data
- \rightarrow fitting and subtracting the central peak (of right diagram) to a Gaussian profile \rightarrow left diagram

www.iaac.space 10/11

Problem C.2: Dark Matter (10 Points)

This problem requires you to read following recently published scientific article:

Probing Dark Matter Using Precision Measurements of Stellar Accelerations.

A. Ravi, N. Langellier, D.F. Phillips, M. Buschmann, B.R. Safdi, R.L. Walsworth, arXiv:1812.07578 [astro-ph.GA], (2018). Link: https://arxiv.org/pdf/1812.07578.pdf

Answer following questions related to this article:

- (a) What are the current methods to determine the dark matter density or radial velocity and what are the disadvantages of these methods?
- → current methods: Doppler shifts, dispersion of local stellar velocities (vertical direction)
- → disadvantages: indirect and subject to large systematic uncertainties
- (b) Explain the new method for measuring dark matter density that is proposed in the article.
- ightarrow direct measurement of stellar <u>accelerations</u> ightarrow gravitational potential ightarrow dark matter density
- (c) Let $a_r(r)$ be the dark matter contribution to the acceleration: Show that the dark matter density is given by $\rho_{DM} pprox rac{1}{4\pi G} \left(2(A-B)^2 rac{\partial a_r}{\partial r}
 ight)$ with Oort constants $2(A-B)^2 = 2GM(r)/r^3$.
- ightarrow contribution to the acceleration: $a_r(r) = -G rac{M(r)}{r^2}$
- ightarrow dark matter density: $ho_{DM}=rac{M'(r)}{V(r)}=rac{M'(r)}{4\pi r^2} \ \Rightarrow \ M'(r)=4\pi r^2
 ho_{DM}$

$$\rightarrow \frac{\partial a_r}{\partial r} = 2G\frac{M(r)}{r^3} - G\frac{M'(r)}{r^2} = 2(A - B)^2 - 4\pi G\rho_{DM} \implies \rho_{DM} \approx \frac{1}{4\pi G} \left(2(A - B)^2 - \frac{\partial a_r}{\partial r}\right)$$

- (d) How much does the velocity of the stars change during the lifetime of a human (80 years)?
- \rightarrow rate: 0.5 cm/s/year \rightarrow velocity change in 80 years: 40 cm/s
- (e) What is important for measuring stellar accelerations and which instruments can be used?
- → requirement: extremely stable calibration of the spectrograph
- \rightarrow spectrograph \rightarrow possible instruments for calibration: laser frequency comb (astro-combs)
- (f) Explain the curves of the four diagrams in figure 2 (see article).
- \rightarrow (a) v_{accel} : acceleration due to gravitation Milky Way, constant rate
- \rightarrow (b) v_{comp} : stellar companions (e.g. star cluster), periodic change
- \rightarrow (c) v_{plan} : planets around star, (many) overlapping periodic oscillations
- \rightarrow (d) v_{noise} : noise (e.g. magnetic activities, instruments), random with some recurring noise

www.iaac.space 11/11