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Please note that there are many ways to reach the final solutions.
Not all detailed steps are elaborated in this solution document.
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Problem A.1: Interstellar Mission (4 Points)

You are on an interstellar mission from the Earth to the 8.7 light-years distant star Sirius. Your
spaceship can travel with 70% the speed of light and has a cylindrical shape with a diameter of
6 m at the front surface and a length of 25 m. You have to cross the interstellar medium with an
approximated density of 1 hydrogen atom/m3.

(a) Calculate the time it takes your spaceship to reach Sirius.
(b) Determine the mass of interstellar gas that collides with your spaceship during the mission.

Note: Use 1.673× 10−27 kg as protonmass.

Solution a:

t =
8.7 ly

0.7c
=

8.7 c · yr
0.7c

= 12.4 yr

Solution b:
Number of collisions with atoms:

N = ρ · V = ρ · A · s = ρ · π
(
d

2

)2

· s

Total mass of interstellar gas:

M = mH2 ·N = 2mp ·N = 2mp · ρ · π
(
d

2

)2

· s = 7.8 · 10−9 kg
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Problem A.2: Time Dilation (4 Points)

Because you are moving with an enormous speed, your mission from the previous problem A.1
will be influenced by the e�ects of time dilation described by special relativity: Your spaceship
launches in June 2020 and returns back to Earth directly a�er arriving at Sirius.

(a) Howmany years will have passed from your perspective?
(b) At which Earth date (year andmonth) will you arrive back to Earth?

Solution a:
→ No time dilation: 24.8 years

Solution b:
With time dilation:

tEarth =
tSpaceship√

1− v2

c2

=
tSpaceship√
1− 0.72

= 34.7 yr

→ Date of arrival: January 2055
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Problem A.3: Magnitude of Stars (4 Points)

The star Sirius has an apparent magnitude of -1.46 and appears 95-times brighter compared to
the more distant star Tau Ceti, which has an absolute magnitude of 5.69.

(a) Explain the terms apparent magnitude, absolute magnitude and bolometric magnitude.
(b) Calculate the apparent magnitude of the star Tau Ceti.
(c) Find the distance between the Earth and Tau Ceti.

Solution a:
→ Apparent magnitude: brightness observed from Earth (relative scale, historical background)
→ Absolute magnitude: apparent magnitude in 10 parsecs distance
→ Bolometric magnitude: including all wavelengths (not only visible light)

Solution b:
The apparent magnitudes are denoted bymS ,mτ and it is IS/Iτ = 95:

mτ = mS + 2.5 · log(IS/Iτ ) = 3.49

Solution c:
The absolute magnitude is denoted byM :

m−M = 5 log(r)− 5 =⇒ r = 10
m−M+5

5 = 3.63 pc
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Problem A.4: Emergency Landing (4 Points)

Because your spaceship has an engine failure, you crash-land with an emergency capsule at the
equator of a nearby planet. The planet is very small and the surface is a desert with some stones
and small rocks laying around. You needwater to survive. However, water is only available at the
poles of the planet. You find the following items in your emergency capsule:

• Stopwatch

• Electronic scale

• 2m yardstick

• 1 Litre oil

• Measuring cup

Describe an experiment to determine your distance to the poles by using the available items.

Hint: As the planet is very small, you can assume the same density everywhere.

Solution:

1. You collect a small rock from the surface.

2. You measure the massm′ of the rock (on this planet) with the electronic scale. The Earth
massm can be determined with the acceleration g (see 5):m = 1N ·m′/g

3. By using the measuring cup and the oil, you determine the volume V of the rock.

4. This gives you the density of the rock ρ = m/V . As the planet is small, you assume this
density for the planet. The formula for the mass of the planet isM = ρ · V = ρ · 4

3
πR3.

5. You place the yardstick vertically into the air and drop a small rock from a height h down to
the ground. You measure the falling time t with your stopwatch. This let’s you determine
the acceleration of the stone: g = 2h/t2

6. From Newton’s law of universal gravitation it follows that the gravitational acceleration at
the surface is g = GM

R2 with the gravitational constant G. By using the formula for the
planet’s mass, you determine the radius of the planet: R = 3g

4πGρ

7. You know that you have landed at the equator of the planet. Using basic geometry, you
then determine the distance from the equator to the poles: d = 2πR

4
= π

2
R
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Problem B.1: Temperature of Earth (6 Points)

Our Sun shines bright with a luminosity of 3.828 x 1026 Watt. Her energy is responsible for many
processes and the habitable temperatures on the Earth that make our life possible.

(a) Calculate the amount of energy arriving on the Earth in a single day.
(b) To howmany litres of heating oil (energy density: 37.3 x 106 J/litre) is this equivalent?
(c) The Earth reflects 30% of this energy: Determine the temperature on Earth’s surface.
(d) What other factors should be considered to get an evenmore precise temperature estimate?

Note: The Earth’s radius is 6370 km; the Sun’s radius is 696 x 103 km; 1 AU is 1.495 x 108 km.

Solution a:
The energy is distributed on a sphere with radius 1 AU. The surface pointing to the Sun is πR2

E :

Eday = L� ·
AE
A1AU

· t = L� ·
πR2

E

4π · (1AU)2
· t

→ Result: 1.7 x 1017 W, which is 1.5 x 1022 J/day

Solution b:
From V = Eday/ρE it follows 4.0 x 1014 Litres.

Solution c:
We use the Stefan-Boltzmann law with σ = 5.67 · 10−8 W

m2K4 and an emissivity ε of 0.7:

LE · ε = 4πR2
EεσT

4
E =⇒ TE = 4

√
LE · ε

4πR2
Eσ

→ Result: 254.7 K, which is -18.5 ◦C

Solution d:
→ the greenhouse e�ect, layered structure of the atmosphere, etc.
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Problem B.2: Distance of the Planets (6 Points)

The table below lists the average distanceR to the Sun and orbital period T of the first planets:

Distance Orbital Period
Mercury 0.39 AU 88 days
Venus 0.72 AU 225 days
Earth 1.00 AU 365 days
Mars 1.52 AU 687 days

(a) Calculate the average distance of Mercury, Venus and Mars to the Earth.
Which one of these planets is the closest to Earth on average?

(b) Calculate the average distance of Mercury, Venus and Earth to Mars.
Which one of these planets is the closest to Mars on average?

(c) What do you expect for the other planets?

Hint: Assume circular orbits and use symmetries to make the distance calculation easier. You can
approximate the average distance by using four well-chosen points on the planet’s orbit.

Solution:
Assuming circular orbits, the position ~ri(t) of a planet i at a given time t is

~ri(t) = Ri

(
cos(ωit)

sin(ωit)

)

with the angular velocity ω = 2π/T . The distance of two planets at the time t is given by

∆r(t) = |~r1(t)− ~r2(t)| =
√

[R1 cos(ω1t)−R2 cos(ω2t)]
2 + [R1 sin(ω1t)−R2 sin(ω2t)]

2.

The circular symmetries allow us to fix a single point of planet 2 for averaging over time:

∆r(t) =

√
[R1 cos(ω1t)−R2]

2 + [R1 sin(ω1t)]
2

Instead of averaging over all t, an approximationwith four equally distributed points is su�icient:

〈∆r〉 =
1

4
·

4∑
k=1

∆r

(
T1
4
k

)
Solution a:

Average Distance (without approximation)
Mercury-Earth 1.04 AU 1.04 AU
Venus-Earth 1.12 AU 1.13 AU
Mars-Earth 1.67 AU 1.69 AU
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→Mercury is the closest to Earth.

Solution b:

Average Distance (without approximation)
Mercury-Mars 1.54 AU 1.55 AU
Venus-Mars 1.60 AU 1.61 AU
Earth-Mars 1.67 AU 1.69 AU

→Mercury is the closest to Mars.

Solution c:
Mercury is on average the closest planet to all planets of the solar system.
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Problem B.3: Mysterious Object (6 Points)

Your research team analysis the light of a mysterious object in space. By using a spectrometer,
you can observe the following spectrum of the object. The Hα line peak is clearly visible:

(a) Mark the first four spectral lines of hydrogen (Hα, Hβ, Hγ, Hδ) in the spectrum.
(b) Determine the radial velocity and the direction of the object’s movement.
(c) Calculate the distance to the observed object.
(d) What possible type of object is your team observing?

Solution a:
The Hα peak is located at 800 nm (without red shi�: 656 nm). This yields the red shi� z:

z =
λobs
λexp

− 1 = 0.22

From λobs = (z + 1) · λexp it follows:

Hα Hβ Hγ Hδ
At rest 656 nm 486 nm 434 nm 410 nm

With red shi� 800 nm 593 nm 529 nm 500 nm

Solution b:
The red shi� corresponds to the radial velocity of an object:

z =

√
1 + v/c

1− v/c
− 1 ⇒ v =

(z + 1)2 − 1

(z + 1)2 + 1
c = 58881 km/s
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→ positive red shi�, i.e. the object is moving away

Solution c:
According to Hubble’s law, v = H0 · dwith the distance d and the constant H0 = 70 km/s/Mpc:

d =
v

H0

= 841Mpc

Solution d:
→ possible objects for this large distance: galaxy or quasar
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Problem B.4: Distribution of Dark Matter (6 Points)

The most mass of our Milky Way is contained in an inner region close to the core with radiusR0.
Because the mass outside this inner region is almost constant, the density distribution can be
written as following (assume a flat Milky Way with height z0):

ρ(r) =

{
ρ0, r ≤ R0

0, r > R0

(a) Derive an expression for the massM(r) enclosed within the radius r.
(b) Derive the expected rotational velocity of the Milky Way v(r) at a radius r.

(c) Astronomical observations indicate that the rotational velocity follows a di�erent behaviour:

vobs(r) =
√
Gπρ0z0R0

(
5/2

1 + e−4r/R0
− 5

4

)
Draw the expected and observed rotational velocity into the plot below:

(d) Scientists believe the reasons for the di�erence to be dark matter: Determine the rotational
velocity due to dark matter vDM(r) fromR0 and draw it into the plot above.
(e) Derive the dark matter massMDM(r) enclosed in r and explain its distributed.
(f) Explain briefly three theories that provide explanations for dark matter.
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Solution a:
It isM(r) = V (r) · ρ0 with a volume of V (r) = πr2z0:

M(r) =

{
ρ0 · πr2z0, r ≤ R0

ρ0 · πR2
0z0, r > R0

Solution b:
Using basic mechanics we get:

ar = ag ⇒
v2(r)

r
= G

M(r)

r2
⇒ v(r) =

√
G
M(r)

r

UsingM(r)we can write the final answer as:

v(r) =

{ √
Gπρ0z0 ·

√
r, r ≤ R0√

Gπρ0z0 ·R0/
√
r, r > R0

Solution c:

Solution d:
The di�erence between observed and expected rotational velocity:

vDM(r) = vobs(r)− v(r) =
√
Gπρ0z0R0

(
5/2

1 + e−4r/R0
− 5

4
−
√
R0

r

)

Solution e:
→ It isMDM(r) = v2DM(r)r/G; dark matter seems to increase with increasing r (halo).

Solution f:
→ Examples: WIMPS, Axions, Sterile Neutrinos, Black Holes, MACHOS, MOND, etc.
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Problem C.1 : Detection of Gravitational Waves (10 Points)

This problem requires you to read the following recently published scientific article:

Observation of Gravitational Waves from a Binary Black Hole Merger.
B. P. Abbott et al., LIGO Scientific Collaboration and Virgo Collaboration
arXiv:1602.03837, (2016). Link: https://arxiv.org/pdf/1602.03837.pdf

Answer following questions related to this article:

(a) Howwas the existence of gravitational waves first shown?

→ by the discovery of the binary pulsar system PSR B1913+16 and observations of its energy loss

(b) Which detectors exist around the world? Why did only LIGO detect GW150914?

→ TAMA 300 (Japan), GEO 600 (Germany), LIGO (United States), Virgo (Italy)
→ only LIGO detectors were observing at the time of GW150914

(c) Explain the components of the LIGO detectors.

→ two detectors in Hanford and Livingston (10ms light distance)
→Michelson interferometer (1064-nm Nd:YAG laser, 4km arm length)
→ resonant optical cavity (multiplies the e�ect of a gravitational wave on the light)
→ transmissive power-recycling mirror at the input (additional resonant buildup of the laser)
→ transmissive signal-recycling mirror at the output (broadening of bandwidth)

(d) Describe the di�erent sources of noise. Howwas their impact reduced?

→ seismic noise: quadruple-pendulum system, active seismic isolation platform
→ thermal noise: low-mechanical-loss materials
→ optical phase fluctuations: very low pressure in tubes
→ environmental disturbances: seismometers, accelerometers, microphones, magnetometers,
radio receivers, weather sensors, ac-power line monitors, cosmic-ray detector

(e) What indicates that the gravitational wave originated from themerger of a black hole?

→ the objects must be very close and very compact; neutron star pair: insu�icient mass; black
hole and neutron star pair: merge at much lower frequency
→ decay of the waveform consistent with the oscillations of a relaxing black hole
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→ consistency checks: mass/spin of final black hole, waveformpower series, graviton properties

(f) Which are the methods used to search for gravitational wave signals in the detector data?

→ generic transient search: minimal assumptions about waveforms
→ binary coalescence search: using waveforms predicted by general relativity

(g) Howwere the source parameters (mass, distance, etc.) determined from the data?
→ estimate: with matched-filter search; refinement: general relativity-basedmodels
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Problem C.2 : First Image of a Black Hole (10 Points)

This problem requires you to read the following recently published scientific article:

First M87 Event Horizon Telescope Results. I. The Shadow of the Supermassive Black Hole.
The Event Horizon Telescope Collaboration, arXiv:1906.11238, (2019). Link: https://arxiv.org/pdf/1906.11238.pdf

Answer following questions related to this article:

(a) Calculate the photon capture radius and the Schwarzschild radius of M87∗ (in AU).

→ photon capture radius: Rc =
√

27rg =
√

27GM/c2 = 333AU

→ Schwarzschild radius: RS = 2rg = 2GM/c2 = 128AU

(b) Why was it not possible for previous telescopes to take such a picture of the black hole?

→ due to limited baseline coverage

(c) Describe the components and functionality of the event horizon telescope.

→ very-long-baseline interferometry; measures visibility of radio brightness directly
→ observation at 1.3 mmwith eight stations over six geographical locations
→ the separate telescopes simultaneously sample and record the radiation field from the source
→ synchronization with GPS; equipped with hydrogenmaser frequency standard

(d) Explain the two algorithms used to reconstruct the image from the telescope data.

→ CLEAN: inverse-modeling approach, deconvolves the interferometer point-spread function
from the Fourier-transformed visibilities
→ RML (regularized maximum likelihood): forward-modeling approach, searches for an image
that is consistent with the observed data and favours specified image properties

(e) What parameters were required for the GRMHD simulations to generate an image?

→ properties of the fluid (magnetic field, velocity field, and rest-mass density), the emission and
absorption coe�icients, the inclination, the position angle, the black hole mass and distance

(f) Explain the physical origins of the features in Figure 3 (central dark region, ring, shadow).
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→ emission ring and shadow: combination of an event horizon and light bending
→ north-south asymmetry: produced by strong gravitational lensing and relativistic beaming
→ central flux depression: observational signature of the black hole shadow

(g) How can the image resolution be increased in future observations?

→ shorter wavelength, by adding more telescopes and space-based interferometry
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