
International Astronomy and **Astrophysics Competition** Qualification Round 2022

Problem A: James Webb Space Telescope (5 Points)

(A) Primary mirror

(B) Science instrument module (C) Optics subsystem

(D) Secondary mirror

(E) Sunshield

(F) Star trackers

(G) Spacecraft bus (J) Stabilization flap (H) Antenna

(I) Solar array

Problem B: Very Dense Earth (5 Points)

$$V = \frac{M}{\rho} = \frac{4}{3}\pi R^3 \implies D = 2R = 2\left(\frac{3M}{4\pi\rho}\right)^{1/3} = \left(\frac{6M}{\pi\rho}\right)^{1/3} = 283.6 \, m$$

Problem C: Asteroid Field (5 Points)

Number of asteroid collisions: $N = \rho V = \rho \cdot \pi R^2 \cdot d$; momentum conservation:

$$Mv + Nmu \approx Mv = (M+Nm)w \ \Rightarrow \ w = \frac{Mv}{M+Nm} \ \Rightarrow \ \Delta v = v - w = v\left(1 - \frac{1}{1 + N\frac{m}{M}}\right)$$

Problem D: Position of the JWST (5 Points)

- (a) To block the radiation of the Sun
- (b) $\omega = 2\pi/365d = 0.017/d$
- (c) $a=rac{F}{m}=\omega^2(d_E+d)-Grac{M}{(d_E+d)^2}=2.57\cdot 10^{-4}~m/s=22.2~m/d$ (away from the Earth)
- (d) The gravitational force of the Earth $F_{G,E} \rightarrow$ enables the stable Lagrange point L₂

Problem E: Infrared Radiation (5 Points)

 \rightarrow wavelength 1 mm to 700 nm; lower energy than red; \rightarrow infrared mostly blocked by Earth's atmosphere; \rightarrow cosmological redshift: capable of observing more distant objects

→ observing through dust and clouds possible

www.iaac.space **Basic Solution**